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Seasonal timing and interindividual
differences in shiftwork adaptation

Check for updates

RubyKim1 , Yu Fang2, Minki Lee1, DaeWookKim1,3, Zhengxu Tang1, Srijan Sen2,4 & Daniel B. Forger1,5

Millions of shift workers in the U.S. face an increased risk of depression, cancer, and metabolic
disease, yet individual responses to shift work vary widely.We find that a conserved biological system
of morning and evening oscillators, which evolved for seasonal timing, may contribute to these
interindividual differences. In this study, we analyze seasonality in medical interns working shifts,
revealing that summer-winter variation correlates with increased circadian misalignment after shift
work. Mathematical modeling suggests that seasonal timing influences the rate of adaptation to new
schedules, predicting differential effects onmorning and evening oscillators. Additionally, we examine
genetic polymorphisms linked to seasonality in animals and find that human variants can impact how
quickly circadian rhythms respond to schedule changes. Based on our findings, we hypothesize that
the vast interindividual differences in shift work adaptation—critical for shift worker health—can in part
be explained by biological mechanisms for seasonal timing.

Daily biological functions such as sleep, heart rate andmetabolismare timed
by intracellular circadian clocks which exist within almost all cells
throughout the body. Modern life challenges this timekeeping system in
ways it was not adapted for. Industrialization, shift work, indoor lighting,
and smartphones drastically affect our sleep and the circadian timing of our
biological systems1,2. We are only beginning to understand the implications
for how these factors affect human health. A tremendous amount of evi-
dence from plant and animal studies suggests that this timing is photo-
periodic and requires a multi-oscillator system3,4. Thus, organisms
anticipate at least both dawn and dusk, rather than a single time of day.
Substantial evidence from human studies show that photoperiod alone can
drive seasonal activity5,6. Much of this photoperiodism is coordinated
intracellularly in plants7 whereas animals such as Drosophila andmice time
dawn and dusk using a system of “evening” and “morning” oscillators that
were studied by Pittendrigh and Daan almost 50 years ago8. There is strong
evidence for this dual oscillator framework across species, from splitting
behavior in diurnal rodents9 to bimodal activity in Drosophila10. The
suprachiasmatic nucleus (SCN) within the brain, often referred to as the
“central circadian pacemaker,” has multiple cell types which express dif-
ferent genes and synchronizing agents such as vasoactive intestinal poly-
peptide (VIP), neuromedin-S (NMS), and arginine vasopressin (AVP)11.
Many aspects of circadian timekeeping are conserved across species,
including the transcription-translation feedback loop structure12 and
metabolic activity in the SCN13. Overall, there is tremendous support in the

literature that multiple oscillators control circadian timing across species,
including in humans14,15.

This multi-oscillatory timing of dawn and dusk has largely been
ignored in the human circadian rhythms literature. However, a careful look
at the data suggests that it could be quite important. Laboratory studies have
shown that human sleep duration andmelatonin profiles vary according to
photoperiod6,16, and these effects are pronounced in seasonal affective dis-
order (SAD)17. In controlled settings, photoperiod also affects body tem-
perature, prolactin secretion, and cortisol secretion6. When humans are
exposed to natural lighting conditions, their melatonin rhythms encode
dawn and dusk18.With the advancement and increasing prevalence of wrist
wearable technology, there is growing evidence in support of photoperiodic
encoding in our day-to-day lives. Bedtimes and wake times vary sig-
nificantly throughout the year19,20 and significant but modest changes in
sleep duration were observed in ref. 20. In another study21, sleep duration in
over 68,000 participants in Japan increased about 40min from summer to
winter on average.A reviewpaper analyzing data from110 articleswith over
100,000 participants shows that there are significant differences in physical
activity and sedentary behavior across seasons22. The circadian clock seems
to play a significant role in seasonal rhythms inweight gain23. Despite all the
evidence for human seasonality, the detailed underlying mechanisms and
role in day-to-day health have yet to be identified.

The Intern Health Study (IHS) is an annual cohort study that follows
first-year medical residents in the U.S. for the whole intern year. The study
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collects measurements of step count, sleep, and heart rate from wrist
wearable devices during the study period. We study data from over 3000
medical interns in the U.S. in the 2017–2019 cohorts working both day and
night shifts and find strong evidence of seasonal variation in activity and
sleep duration. Using a validated digital biomarker of circadian rhythms of
heart rate (HR)24–26, we study the misalignment between HR circadian
rhythms and sleep-wake patterns. Studying medical interns on shifts, we
find that individuals have drastically different circadian behaviors when
adapting to night shifts, even if they behave similarly under typical condi-
tions. In particular, wefind that individualswith stronger seasonal encoding
are more sensitive to frequent shift changes and have more HR-sleep mis-
alignment on average.

Nurses’ sleep schedules show similar inter-individual differences,
which have been linked to genetic polymorphisms27. In addition, several
recent genome-wide association studies (GWAS) have linked certain single
nucleotide polymorphisms (SNPs) to sleep behaviors and circadian
amplitude inferred from wearable devices28,29. However, the role of genetic
polymorphisms in human seasonality is poorly understood. A previous
GWASstudyof SADfailed to identify any significant associations30, possibly
due to the relatively small sample size (1380 cases and 2937 controls).
Complex traits are often associated with combined effects ofmultiple SNPs,
and many studies do not account for these interactions31. However, there is
growing evidence that genetic factors do indeed affect seasonality32.

A recent study found that the SLC20A2 gene, which encodes sodium-
dependent phosphate transporter 2 (PiT2), is expressed in VIP/NMS neu-
rons localized in the SCN core and is involved in seasonality in mice33.
SLC20A2-deletedmice failed to adapt towinter photoperiods, although they
showed normal behavior with summer photoperiods and in response to
phase shifts. Thus, we wondered if SLC20A2 polymorphisms would influ-
ence human behavior observed throughout the year. In this study, we find
that combinations ofmultiple SNPs of SLC20A2have statistically significant
associations with altered physical activity, sleep duration, and circadian
entrainment across seasons in the medical interns. We create a mathema-
tical model of seasonal encoding in humans based on the dual circadian
oscillator hypothesis by Pittendrigh and Daan8 to study inter-individual
differences in seasonal behavior explained by differences in neural coupling
in different parts of the SCN. Our model predicts that certain individuals
have quicker circadian entrainment than others, surprisingly causing more
circadianmisalignment on average in the context of shift work. Overall, our
work demonstrates that seasonal timingmechanismsmay play a significant
role in shiftwork adaptation and contribute to the large inter-individual
variability in daily behavior found in the data.

Results
Seasonal variation in daily activity and time awake
We analyzed wrist-wearable step data between May 2017 and March 2020
fromover 3000 participants of the IHS (Fig. 1a). The geographic locations of
these participants were spread out across the U.S. with latitudes ranging
from 21.3◦N to 48◦N (Fig. 1b). In line with previous studies22, we found that
the medical interns had significant variation in daily steps throughout the
year with the largest daily steps in the summer (8453.67 ± 60.03 (SEM)
steps) and lowest in the winter (7588.75 ± 69.33 (SEM) steps) (Fig. 1c). The
data were binned by meteorological season (months 3–5 as Spring, 6–8
Summer, 9-11 Fall, and 12, 1, 2 Winter) and compared via one-way
ANOVA(F(3,7309) = 28.95,p = 1.33× 10−18,η2 = 0.0117)withTukey’s test.
Traditionally, seasonalityhasbeen studied in termsof activity duration—the
dual oscillatormodel by Pittendrigh andDaan8 posits that length of activity
changes with photoperiod. Accordingly, we determined long intervals of
time awake from minute-level sleep data collected by the wearable devices
for each participant. All durations of time awake (sleep=0 for each minute)
between 6 and 24 h in length were recorded as time awake for the corre-
sponding date. We chose 6 h as a reasonable lower bound to exclude short
wakeperiodswithin sleep sessions.We found that time awake in themedical
interns varied significantly across seasons as well, with longer periods of
time awake in the summer (15.83 ± 0.04 (SEM) hours) than in the winter

(15.52 ± 0.06 (SEM) hours) or spring (15.54 ± 0.08 (SEM) hours), though
the effect size was small (Fig. 1e, one-way ANOVA, F(3,2019) = 6.43,
p = 2.47 × 10−4, η2 = 0.0095; with Tukey’s test). This finding corroborates
previous studies20,21 showing seasonal patterns in sleep duration. Activity
across the year is influenced bymany external factors, yet we see statistically
significant effects of seasons with highest activity in the summer.

While time awake is an important behavioral endpoint of seasonality,
the size of the sleep data was small compared to the step data (87,600 data
points across all participants, compared to 355,744 for steps). Based on the
data, the wearable devices were not worn consistently during sleep. How-
ever, we found that time awakewas strongly associatedwith daily steps (Fig.
1d, linear regression coefficient β1 = 549.42, p = 5.36 × 10−155), indicating
that large step countswere likely spread out over long periods of time awake.
As a result, we chose to use daily steps as our main behavioral endpoint of
interest in favor of statistical power. The difference in daily steps between
summer and winter was strongly associated with latitude (Fig. 1f, linear
regression coefficient β1 = 32.3221, p = 6.02 × 10−3). Based on the length of
daymodel from34, the photoperiod varies as little as 2.1 h or asmuch as 8.2 h
throughout the year, depending on the participants’ latitude.

Dual oscillator model for seasonal encoding
Based on the notable seasonal variation we found in activity and circadian
rhythms, we decided to explore the potential mechanisms underlying sea-
sonal behavior and responses to shiftworkusing a dual oscillator framework
as proposed by Pittendrigh and Daan8. The model in this paper consists of
two ordinary differential equations (ODEs) describing the rate of change of
the phases of two oscillator populations, the evening (E) and morning (M)
oscillators.Theoscillatorpopulations are coupled to eachother and toa light
signal, where synchronization rates depend sinusoidally on the phase dif-
ference with the synchronizing oscillator (E, M, or light). A schematic
diagram is provided in Fig. 2a, and the ODEs are given in the Methods.

In simulations, when the photoperiod is increased from8 h to 16 h, the
phase gap between the two oscillators also increases (Fig. 2b). We took this
model phase gap to represent activity, as in Pittendrigh and Daan’s study8.
Ourmodel has 7 parameters: two are related to light signaling in the evening
oscillator (ae, be), two are related to light signaling in the morning oscillator
(am, bm), two are the coupling strengths between the two oscillators
(AM, AE), and one is related to the oscillators’ intrinsic frequencies (p). The
parameters are described further in the Methods.

Following Pittendrigh and Daan8, we simulated actograms using our
mathematical model (Fig. 2c). Shaded regions indicate 5-hour time periods
starting from oscillator peaks, to visualize the circadian clock’s influence on
activity.We ran simulationswith a 12:12 light-dark cycle, then every 30days
we adjusted the light-dark schedule either by introducing 3-hour phase
shifts (Fig. 2c, left), changing the photoperiod (Fig. 2c, center)—from12 h to
20 h, back to 12 h, and finally down to 4 h for the last 30 days, or by shifting
the light-dark schedule by 12 h (Fig. 2c, right). After 3-hour phase shifts, the
solutions take some time to re-entrain to thenewschedule, but thephase gap
between the E and M oscillators stays consistent during the entrainment
periods. When the photoperiod is lengthened, the E and M oscillators
gradually move apart in phase, and when the photoperiod is shortened, the
phases of the oscillators gradually get closer. Interestingly, a 12 h phase shift
can produce splitting behavior similar to that seen in animal studies15. The
phases of the E and M oscillators gradually grow apart until they switch
places relative to the new schedule, cross each other, and then become fully
re-entrained. This behavior depends on parameters, which we discuss later.

Seasonality and shiftwork adaptation
There are various circadian rhythms throughout the body that can be
misaligned with each other35. For example, it is known that heart rate is
generally lowest during sleep36, but the circadian rhythms of heart rate can
beoutof phasewith the sleep-wake cycle, and this internalmisalignmenthas
beenassociatedwith an increased riskof cardiovascular disease37 andmental
health risks38,39. For some individuals heart rate is lowest early during the
sleep period, and for others it reaches its minimum later39. In our data on
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average HR minimum occurs around 0:45 ± 5:64 (SD) hours before sleep
midpoint. Not only is the phase relationship between the two rhythms
highly variable from individual to individual, but it also varies widely within
individuals.

We used the Bowman algorithm24 to extract circadian phase fromHR
data.Thealgorithmuses a 24-hour sinusoidalmodelwith a likelihood-based
approach that is not significantly affected by large intervals of missing data.
More details are provided in the Methods. We took the absolute difference
betweenHRcircadianphase orminimum(HRmin) and sleepmidpoint (SM)
measured by the wearable devices to compute a metric we call “HR-sleep
misalignment.” In other words, HR-sleep misalignment ¼ minðjHRmin �
SMj; 24� jHRmin � SMjÞ (Fig. 3a). The distributions of HRmin, SM, and
HR-sleep misalignment are shown in Fig. 3b. We generally expect the HR
minimum to be close to the sleepmidpoint, so that misalignment is close to
zero. There are two bumps in the distributions ofHRmin and SM because the
participants are on night shifts for a small fraction of the internship year.
HR-sleep misalignment is much higher on average during “night sche-
dules,”when the sleepmidpoint is between 12:00 and 24:00 (Fig. 3c).HRmin

and SM can change from day to day, especially as individuals are switching
between different shift schedules. For example, the HR circadian phase
alongwith step actograms of twodifferent participants are plotted in Fig. 3d.

Some participants had reduced seasonal variation in activity, with little
to no difference between summer and winter step counts. Others (23.5% of
participants) had the opposite behavior frommost participants, with more
steps during the winter than during the summer, possibly indicating that
these individuals were more responsive to other seasonal rhythms (e.g.,
hospital burden) rather than photoperiod. We found that participants with
larger summer-winter differences in daily steps, with more activity during
the summer than in the winter, were more likely to have higher HR-sleep
misalignment after winter night shift work (Fig. 3f). Data were averaged
across all days immediately following night shifts for each participant,
regardless of the shift schedule following the night shift. The correlation
betweenHR-sleepmisalignment after night shifts and summer-winter steps
differenceswasnot foundduring the summer (Fig. 3e).Thedata suggest that
individuals with larger seasonal variation in activity are more likely to
experience circadian misalignment after night shifts in the winter than
individuals with reduced or no seasonal variation. On the night shift days,
there wasn’t a significant association between HR-sleep misalignment and
summer-winter steps differences in the summer (n = 1,786,β1 = 2.40× 10−5,
p = 4.56 × 10−1) or winter (n = 1,254, β1 = 6.36 × 10−5, p = 1.01 × 10−1), not
pictured. In addition, we also found that summer-winter daily steps dif-
ferences were significantly associated with average absolute daily changes in

Fig. 1 | Daily activity varies seasonally according to latitude. a Step data across the
year-long internship is collected through a wrist-wearable device. b Geographic
coordinates of study participants, with latitudes varying from 21.3◦N to 48◦N.
cMean daily steps binned by meteorological seasons Spring (n = 1709), Summer
(n = 2280), Fall (n = 1841), and Winter (n = 1483) (one-way ANOVA,
F(3,7309) = 28.95, p = 1.33 × 10−18, η2 = 1.17 × 10-2; with Tukey’s test, *p < 0.05,
****p < 1 × 10−4). d Daily steps are strongly associated with time awake (linear
regression coefficient β1 = 549.42, p = 5.36 × 10

−155, adjusted R2 = 8.1 × 10–3). The
model is fit to individual data (n = 86,536 across 673 subjects) and plotted in bins for

easier visualization. Error bars are standard error of the mean. e Mean daily time
awake binned by meteorological seasons Spring (n = 342), Summer (n = 672), Fall
(n = 564), and Winter (n = 445) (one-way ANOVA, F(3,2019) = 6.43, p = 2.47 ×
10−4, η2 = 9.5 × 10–3; with Tukey’s test, **p < 0.01, ***p < 1 × 10−3). f Mean daily
steps during the summer minus mean daily steps during the winter for each parti-
cipant (n = 1471) plotted against their latitude (linear regression coefficient
β1 = 32.3221, p = 6.02 × 10−3, adjusted R2 = 4.5 × 10–3). Error bars are the standard
error of the mean.
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HR circadian phase (Supplementary Fig. 1), indicating that individuals with
larger summer-winter variation were more likely to have larger day-to-day
variation inHRphase. Aswewill discuss later, the effects of night shift work
onHRcircadian phasewere typically not observed until a day after the night
shifts.

Combined effects of SLC20A2 SNPs
A recent animal study33 shows that the SLC20A2 gene is involved in sea-
sonality in mice, but the effects of the gene on seasonality in humans have
not been studied. From the 225,466 variants genotyped in our sample, we
found 6 single-nucleotide polymorphisms (SNPs) of SLC20A2 (rs3763510,
rs34749433, rs4737046, rs6988483, rs13281070, and rs7818789). We
checked for linkage disequilibrium (LD) and found that the SNPs were
independent except for rs7818789, which we excluded from our study. We
then studied the combined effects of the remaining 5 SNPs. For each SNP,
we chose the allele with the highest frequency as the reference allele, and
encoded the genotype for each SNP as 0, 1, or 2 for homozygous non-
reference, heterozygous, and homozygous reference, respectively. As a
result, each participant’s SLC20A2 genotype was represented by a
5-dimensional vector with elements 0, 1, or 2. In our sample, there were 79
different genotype combinations. Only 23.4% of medical interns who pro-
vided genomic data have the homozygous reference genotype [2,2,2,2,2] for
all 5 SNPs. The most common genotype combination was1,2 in 26% of the
subjects. In this study, we refer to the 10 most common genotype combi-
nations as groups 1–10andcomparedaily steps andHR-sleepmisalignment
across the 10 genotype groups; group percentages are visualized in Fig. 4a.
The numbers of individuals in each group were: n = 1271 for group 1,
n = 1137 for group 2, n = 416 for group 3, n = 391 for group 4, n = 372 for
group 5, n = 298 for group 6, n = 294 for group 7, n = 259 for group 8,
n = 226 for group 9, and n = 194 for group 10. We did not analyze any

further genotype groups due to small sample sizes. Across all individuals in
the 10 genotype groups, we had 20.33 ± 5.81 (SD) hours of minute-level
heart rate data on average per day and 219.48 ± 112.42 (SD) days of heart
rate data per person on average.

We conducted generalized estimating equation (GEE) analyses for
daily steps, time awake, andHR-sleepmisalignment to investigate the effects
of genotype while accounting for the correlation of within-subject data. We
considered the following 12 input variables for each analysis: genotype
group, day of year, and the top 10 genotype-based principal components
(PCs) using the MATLAB toolbox GEEQBOX40. Principal components
analysis was used to help adjust for population stratification41. We assumed
an autoregressive (Lag 1) (AR(1)) correlation structure where correlations
are highest between adjacent times. We found that genotype group is a
significant predictor of daily steps, time awake, andHR-sleepmisalignment.
We then conducted pairwise GEE analyses with Bonferroni correction for
the 45 comparisons across 10 groups and found that group 10 had themost
significant pairwise differences (p < 0.05/45� 0.0011) from other groups in
daily steps, group 1 had themost significant pairwise differences from other
groups in time awake, and group 9 had the most significant pairwise dif-
ferences from other groups in HR-sleep misalignment (Fig. 4b). The sta-
tistics for the GEE analyses across all 10 groups for daily steps, time awake,
and HR-sleep misalignment, as well as for the 45 pairwise GEEmodels are
provided in the supplementary materials.

The time courses of daily steps, HR-sleep misalignment, and time
awake for groups 9 and 10 also show some qualitative differences from
group 1 (Fig. 4d, f). While the peak of activity is in June for all three groups,
the amplitude of seasonal variation in daily steps is larger on average in
group 10 than in groups 1 and 9; see Fig. 4d. Seasonal variation of circadian
misalignment between different endogenous clocks has previously been
observed in ref. 42. The HR-sleepmisalignment curve for group 9 has large

Fig. 2 | Dual oscillator model for seasonal encoding. a Schematic of dual oscillator
model for circadian timekeeping in the SCN. In this paper, the evening (E) and
morning (M) oscillators aremodeled as coupled phase oscillators which both receive
light signaling. bThe phase gap between the E andMoscillators increases to adapt to
long photoperiods. cModel actograms using nominal parameter values. The shaded
regions start at the peaks of sin(ϕE) and sin(ϕM) and span 5 h as in ref. 8. From left to

right, we simulate 3-hour phase shifts, photoperiod changes, and a 12-hour phase
shift. For the 3-hour phase shifts, the 12:12 light-dark schedule is delayed or
advanced by 3 h (left). To simulate photoperiod changes, the photoperiod is
increased to 20 h, then decreased back to 12 h, then reduced to 4 h (center). To
simulate night shift work, the schedule is shifted by 12 h (right).
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fluctuations, particularly in the spring. Groups 9 and 10 on average have
moreHR-sleepmisalignment than group 1, especially in the winter; see Fig.
4e. To check for differences in shift work schedules that might contribute to
the misalignment, we computed the fraction of night schedules where the
sleep midpoint was between 12:00 and 24:00, which was around 5% on
average, and found that there was no significant difference between groups
(one-way ANOVA, F(9,1448) = 1.3044, p = 0.2295). Interestingly, we find
that there is larger variation in HR-sleep misalignment across the genotype
groups during the winter than during the summer (Fig. 4c). The standard
deviation of the mean HR-sleep misalignment within genotype groups is

0.2979 during the winter and 0.1186 during the summer, which is sig-
nificantly differentwith aBartlett’sTestp-value ofp = 0.01145. Plotting time
awake throughout the year, we see that the most common genotype group
has relatively small changes in time awake throughout the year compared to
the other two groups (Fig. 4f).

Altered seasonal timing and shiftwork adaptation in
genotype groups
We used our mathematical model to study the potential mechanisms
underlying the differences we found between the genotype groups. In the

Fig. 3 | HR-sleep misalignment due to night shift work is associated with
summer-winter activity differences. a Heart rate circadian phase, and sleep mid-
point are measured from wrist-wearable data using previously validated methods24.
HR-sleep misalignment is defined as the absolute difference between HR circadian
phase and sleep midpoint. bHistograms for all participants for HR circadian phase
(top), sleep midpoint (middle), and HR-sleep misalignment (bottom). There are
small secondary bumps inHR phase and sleepmidpoint because the participants are
on night shifts for part of the program. cHR-sleep misalignment is much higher on
average during night schedules, when the sleep midpoint is past 12:00. d Step
actograms showing example activity for two different subjects. The red curve indi-
cates HR circadian phase, and the error bars indicate 80% confidence bands. The

subject on the left adjusts to a new schedule within a few days, while the subject on
the right has large day-to-day fluctuations in the HR circadian phase. e Mean HR-
sleep misalignment after night shifts is not significantly associated with summer-
winter daily steps difference during the summer (linear regression coefficient
β1 = 1.03 × 10−5, p = 7.52 × 10−1). The linearmodel isfit to individual data (n = 1618),
and the data are binned for easier visualization. Error bars are the standard error of
the mean. f Mean HR-sleep misalignment after a schedule change is significantly
associated with summer-winter daily steps difference during the winter (linear
regression coefficient β1 = 9.16 × 10−5, p = 1.60 × 10−2, adjusted R2 = 4.3 × 10–3). The
linear model is fit to individual data (n = 1138), and the data are binned for easier
visualization. Error bars are the standard error of the mean.
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ODEmodel, the parameters ae, am, be, and bm adjust coupling of the evening
(subscript ‘e’) and morning (subscript ‘m’) oscillators to light signaling, the
parameters AM and AE are the coupling strengths between the two oscilla-
tors, and p adjusts the separation of intrinsic frequencies of the oscillators.
We fit the 7 parameters and normalized model phase gap
(phase gap ¼ minð ϕE � ϕM

�� ��; 24� ϕE � ϕM
�� ��Þ) to normalized daily steps

data for each subject across all 10 groups. TheODE solutions and steps data
were normalized by their respective means in group 1, and data were fit
using the nonlinear least-squares fitting function lsqnonlin in MATLAB.
Solutionswere accepted for positive exitflag, which typically indicates a local
solution was found. The same initial conditions, informed by previous
studies43,44, were used across all subjects. After parameter fitting, outliers
more than 3 scaled median absolute deviations (MAD) from the median
were determined to be biologically unrealistic predictions of the parameters.
More details for these modeling choices can be found in the Methods. An
example of a model fit is provided in Fig. 5a. We performed one-way
ANOVAs for all 7 parameters across all 10 groups and found significant
differences between groups for only two parameters: ae, which controls light
signaling to the evening oscillator, andAM, which controls E toM coupling;
see Fig. 5b, c. Interestingly, we found that group 10had significantly reduced
ae compared to group 1 (post-hoc Tukey’s test, p = 0.0476) and group 9 had
significantly elevated AM compared to groups 1-3 (post-hoc Tukey’s test,
p = 0.0129, p = 0.0371, p = 0.0437, respectively). There were no significant
differences between groups for the remaining 5 parameters.

Within the dual oscillator framework, our model suggests that
SLC20A2polymorphisms can control coupling betweenSCNregionsor to
light signals. SLC20A2 is expressed in VIP/NMS neurons in the SCN,
encoding a phosphate transporter that potentially influences signaling

pathways33. Groups 9 and10had alteredHR-sleepmisalignment anddaily
steps throughout the year in our GEE models. From the GEE models
alone, it isn’t clear why groups 9 and 10 have these differences. However,
our ODE model suggests that these individuals have reduced coupling of
the E oscillator to light (ae, group 10) or increased E-to-M coupling (AM,
group 9). The effects of these parameters on circadian entrainment in the
model are explored in Fig. 5d, e. While it’s likely that a combination of
multiple parameters drives individual differences in entrainment, con-
tributing to the small observed effect sizes for each parameter in Fig. 5b, c,
we focused on ae and AM because they showed statistically significant
differences across genotype groups andwewere interested in how changes
in these parameters alone can influence entrainment patterns. These
parameters represent coupling strengths, and though the precise
mechanisms of coupling between SCN cells are not fully understood, they
can reasonably vary by an order ofmagnitude45.With reduced coupling of
the E oscillator to light (ae reduced by a factor of 0.1), the M oscillator
adjusts to new photoperiods quickly, while the E oscillator does not
respond (Fig. 5d, left). With increased coupling from the E oscillator toM
oscillator (AM increased by a factor of 10), changes in response to pho-
toperiod happen much more quickly in both directions (Fig. 5d, right).
The effects of these parameter changes are much more noticeable in the
case of a 12 h phase shift. In our study, the medical interns undergo night
shifts for a small fraction of the year.Ourmodel suggests thatwith reduced
coupling of the E oscillator to light, entrainment to a 12 h phase shift
happens much more slowly than in the nominal model (Fig. 5e, top,
compared to Fig. 2c, right). With increased coupling from the E oscillator
to M oscillator, circadian entrainment is quicker and there is no splitting
behavior (Fig. 5e, bottom).

Fig. 4 | Seasonal changes in SLC20A2 polymorphism groups. a Each subject’s
genotype is categorized by a 5-dimensional vector encoding the 5 SLC20A2 SNPs.
We encode each SNP with the value 2 (homozygous reference), 1 (heterozygous), or
0 (homozygous non-reference). The pie chart shows the 10 most common genotype
combinations of the 5 SNPs. The 10 groups make up 76.44% of the subjects.
b Differences between groups are tested using generalized estimating equation
(GEE) models with day of year and the top 10 principal components (PCs) as
covariates. There is a significant difference between groups for daily steps
(p = 0.0014), HR-sleepmisalignment (p = 0.0082), and time awake (p = 0.0206). The
bars visualize the number of significant pairwise differences (p < 0.0011) for each of
the 10 groups, using GEE analyses with Bonferroni correction. cMean HR-sleep

misalignment calculated for each genotype group has a significantly larger variance
during the winter than during the summer (Bartlett’s Test, p = 0.011). d Daily steps
over the year for genotype groups 1, 9, and 10.Group 1 is themost commongenotype
group, and Groups 9 and 10 have the most pairwise differences from the other
groups in HR-sleep misalignment and daily steps, respectively, shown in panel (b).
Error bars are the standard error of themean. eHR-sleepmisalignment for groups 1,
9, and 10. Error bars are the standard error of the mean. HR-sleep misalignment is
visibly different across the three groups, especially during the winter. f Time awake
for groups 1, 9, and 10. Error bars are the standard error of the mean. Time awake in
group 1 has a smaller amplitude of change compared to the other two groups.
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Based on our model, we predicted that group 9’s intrinsic circadian
rhythmswould bemore responsive to light signals and entrainmore quickly
than other groups. We investigated the dataset further, analyzing circadian
entrainment and HR-sleep misalignment following night shifts, and found
that the data indeed reflects the behavior predicted by our model. To study
the effects of night shifts, we categorized thembywhether theywere isolated
or happened consecutively (and howmany times).We counted the number
of isolated night shifts, the number of pairs of night shifts, the number of
three consecutive night shifts, and so on, and found that the participants did
not usually have more than two consecutive night shifts. 50% of the time
night shiftswere one-off and 32%of the time theywere followedby a second
night shift before returning to day shifts (Fig. 6b). With participants occa-
sionally going on one or two night shifts, we found that there generally
wasn’t enough time for their HR circadian rhythms to change significantly.
In the double-plotted actograms in Fig. 6a, we can see that theHR circadian
phase seems to “ignore” occasional one-off night shifts. We note that the
proportion of night shifts throughout the yearwas not significantly different
across the 10 genotype groups (one-wayANOVA,p = 0.5465, not pictured).

We carefully studied the effects of single night shifts and two con-
secutive night shifts in the dataset and found that there were differences in
entrainment rate and HR-sleep misalignment during and after the night
shifts across genotype groups 1, 9, and 10. In these analyses, we considered
night shifts that started after at least 30 days of day shifts. Previous studies
suggest that entrainment to a night shift schedule could take anywhere from
a few days to a few weeks46–48. The magnitude of the change in HR phase in
response to the night shifts was larger in group 9 than in group 1, and as a

result group 9 had more HR-sleep misalignment during the day shifts that
followed (Fig. 6c, d). We conducted one-way ANOVA analyses for each of
the three groups’ data across the four days. All 12 tests gave significant p-
values, indicating statistically significant differences in the change in HR
phase andHR-sleepmisalignment across the days. Therewas relatively little
change in the phase of HR rhythms of group 1 participants after a single
night shift (−0.13 ± 0.11 (SEM) hours/day), so the HR-sleep misalignment
was large on thedays of thenight shifts (7.22 ± 0.13 (SEM)hours).However,
because the change in HR phase in response to night shifts was small, the
HR-sleepmisalignment in group 1was relatively small in the following days
after returning to day shifts (3.37 ± 0.17, 3.44 ± 0.18, and 3.27 ± 0.18 (SEM)
hours, for days 1-3). On the other hand, for group 9, because the change in
HR phase in response to night shifts was large (−0.72 ± 0.33 (SEM) hours/
day), although their HR-sleep misalignment was lower than that of other
groups on the days of the night shifts (6.67 ± 0.32 (SEM) hours), their
misalignment was relatively large after returning to day shifts (3.96 ± 0.42,
4.29 ± 0.40, and 4.33 ± 0.44 (SEM) hours, for days 1-3); see Fig. 6c.

With two consecutive night shifts, we again see relatively large HR
phase changes in group 9, 1.75 ± 0.71 (SEM) hours/day on the second night
shift compared to 0.99 ± 0.20 (SEM) hours/day for group 1 (Fig. 6d). The
data show a similar trend for three consecutive night shifts as well, with a
HR-sleep misalignment of 3.98 ± 0.67 (SEM) hours in group 9 and
2.53 ± 0.62 (SEM) hours in group 1 immediately following 3 night shifts
(not pictured). We repeated the analyses for single night shifts in the
summer vs. winter, finding similar behaviors with larger HR phase changes
andHR-sleepmisalignment in group 9 compared to group 1 after the night

Fig. 5 | Parameter fitting suggests altered seasonal tracking in polymorphism
groups. a Example of theODEmodel fit to daily steps (gray points) data for a subject
from Group 1. The 30-day means are plotted to help visualize the time course. Error
bars indicate standard deviation. The phase gap computed by the ODE model and
daily steps from the data are normalized by the respective group 1means. b, cTwo of
the fitted parameters, ae and AM, are significantly different between the 10 genotype
groups. b The parameter ae adjusts coupling of the E oscillator to light signals. One-
way ANOVA F(9, 1443) = 2.39 and p = 0.011, with post-hoc Tukey’s test, *p < 0.05,
and η2 = 0.0147. Error bars indicate standard error. On average, group 10 has smaller

ae than the other groups. c The parameter AM determines the coupling from the E
oscillator to theMoscillator. One-wayANOVAF(9,1344) = 1.90 and p = 0.048, with
post-hoc Tukey’s test, *p < 0.05, and η2 = 0.0125. On average, group 9 has larger AM

than the other groups. d Model actograms for varying photoperiods with reduced
coupling of the E oscillator to light (ae) and increased coupling from the E oscillator
toMoscillator (AM). The shaded regions start at the peaks of sin(ϕE) and sin(ϕM) and
span 5 h as in ref. 8. eModel actograms for a 12-hour light-dark schedule shift with
reduced ae (by a factor of 0.1) and increased AM (by a factor of 10).
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shifts (Supplementary Fig. 2). Interestingly, the contrast in average behavior
between groups was more dramatic in the winter. These observations align
with ourODEmodel prediction that group 9 on average responds relatively
quickly to night shifts. The data suggest that, while some individuals’ cir-
cadian clocksmight ignore occasional night shifts, group 9 is more sensitive
to schedule changes and therefore can face more circadian misalignment
over time.

Discussion
In this study, we considered data from thousands of medical interns over
their year-long internship. Due to the relative ease of collecting wrist-
wearable data, we have the advantage of a large sample size. On the other
hand, the data is not collected under controlled settings, so there is large
variability due to external conditions: big life events, changes in diet,
exposure to artificial lighting, etc. The main caveat with our study is that
the participants are medical interns in non-laboratory settings, so the
results must be interpreted carefully within this context. The medical
interns in our study experience seasonal variation in activity, which could
potentially be explained by many different environmental and social
factors. Photoperiod and temperature often act as complementary
environmental cues for seasonal behavior, where a decrease in day length
generally coincides with a drop in temperatures, and significant effects of
temperature have previously been demonstrated in other populations21,49.
We believe that seasonal behavior is also influenced by occupational
demands. It has been observed that hospital admissions typically increase
in the winter, though it may depend on the type of care and medical
conditions50–52. The highest activity in our dataset was typically in the
summer, despite the potentially counteracting seasonal effects of hospital
burden. We note that higher activity in the summer has been observed in
other populations as well19–22, though the effect sizes in our study are

relatively small. Remarkably, we still find significant associations between
seasonal behavior and shiftwork adaptation.

There is strong evidence in the literature that SAD is related to seasonal
and circadian rhythms53. It is known that individuals with SAD are more
likely to experience sleep problems54. In a previous study onmedical interns
participating in the IHS, we showed a bidirectional link between dailymood
and circadianmisalignment33. Future work could explore whether there is a
seasonal component to this relationship, and whether this could provide
clues about SAD or seasonal mood disorders. The focus of this study was to
examine the relationships between seasonality, circadianmisalignment, and
shift work adaptation. Our analyses show that seasonal variations corre-
sponding to changes in day length are associated with day-to-day circadian
misalignment. In our dual oscillator model, the mechanisms involved in
seasonal timing alsomodulate circadian entrainment. In addition, we found
significant differences in daily steps, time awake, and HR-sleep misalign-
ment throughout the year across different genotypes, grouped by poly-
morphisms of the SLC20A2 gene. We see much larger differences in HR-
sleep misalignment between the genotype groups in the winter than in the
summer. Based on these findings, we hypothesize that SLC20A2 influences
photoperiodic encoding in humans.

It is thought that the circadian phase difference between the core and
shell regions of the SCN is involved in photoperiodic encoding, with these
regions acting as “evening” and “morning” oscillators. Previous models of
seasonal timingmake the simplification that only the SCNcore receives light
signaling43,55,56. In simulations, seasonal changes are then created by artifi-
cially adjusting the neuronal coupling strength based on photoperiod, but
this approach does not explain how the SCN detects photoperiod. Our
model is novel in that it assumes both regions of the SCN receive light
signaling, which is supported by experiments57. At the same time, their
phases are naturally pushed away from each other due to different intrinsic

Fig. 6 | Polymorphism group experiences quicker changes in HR circadian
rhythms in response to night shifts. a Example double-plotted actograms for a
participant occasionally going on night shifts. The red curve indicates the phase of
the HR circadian rhythms. b Frequency of number of consecutive night shifts. Most
night shifts in the dataset were either isolated night shifts or two consecutive night
shifts (n = 17,331). c Change in HR phase (hours/day) and HR-sleep misalignment
(hours) in response to a single night shift. Data are averaged across single night shifts
that occur after at least 30 days of day shifts to help control for effects of previous shift
schedules. Themagnitude of the change inHRphase immediately after a single night
shift is larger on average in groups 9–10 (−0.72 ± 0.33 (SEM) and −0.67 ± 0.41

(SEM) hours/day, respectively) than in group 1 (−0.13 ± 0.11 (SEM) hours/day). On
average, group 9 has lowerHR-sleepmisalignment than group 1 on single night shift
days but higher misalignment afterwards on days 1–3. Error bars indicate SEM.
dChange in HR phase (hours/day) and HR-sleep misalignment (hours) in response
to two consecutive night shifts. Group 9 responded with the largest change in HR
phase on the second consecutive night shift (day 1, top). Group 9 had the most
misalignment immediately after the two-night shifts (day 2, bottom). One-way
ANOVA analyses for each of the three groups’ data across the four days (for a total of
12 tests) all gave significant p-values. Horizontal lines indicate significant pairwise
comparisons from post-hoc Tukey’s tests.
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frequencies. In our dual circadian oscillator model, circadian timekeeping
candependon the strength of light signaling in either oscillator aswell as the
coupling between the two oscillators. Our mathematical model shows
strong evidence that the inter-individual differences in circadian time-
keeping couldbe explainedby altered light signaling in the eveningoscillator
or couplingbetween theoscillators.Thedifferences in theparameters shown
in Fig. 5b, c are small but statistically significant. For all 7 parameters, we
chose to omit outliers more than three scaled MAD from the median. For
some of the outlier parameters, we found that the ODEmodel has irregular
dynamics, including phase drifting or bursting-like behaviors. We plan to
investigate these dynamics in future work.

Genotype group9 exhibited the largestHR-sleepmisalignment, yetour
ODE model predicts that this group also demonstrates strong E-to-M
coupling and robust circadian entrainment to 12-hour phase shifts.We also
find in the data that this group responds quickly to night shifts (Fig. 6).
Although counterintuitive, this pattern likely arises becausemedical interns
primarily work day shifts with occasional night shifts. The circadian clock
adjusts slowly, so a few night shifts after many day shifts don’t cause major
misalignment if the clock hasn’t fully shifted. However, if it entrains quickly
(e.g. for group 9), one or two night shifts can lead to greater misalignment
after switchingback today shifts. In this dataset,most of thenight shiftswere
1-3 consecutive night shifts. Various jet lag and shift work disorder treat-
ment approaches aim to speed up entrainment of circadian rhythms to
external cues58. For long periods of consecutive night shifts, we expect that
quick entrainment will instead lead to lower misalignment on average, but
the behavior for frequent, short periods of schedule changes is less intuitive.
Previous mathematical models have previously explored the effects of
melatonin treatment59 and light exposure therapy60 on the circadian clock as
a single-oscillator system.OurODEmodel canbe used to further investigate
the effects of shift schedules and altered seasonal timing mechanisms on
shiftwork adaptation.

It is well established that Drosophila, rodents, and other crepuscular
animals with morning and evening bouts of activity have populations of
neurons in the SCN that track dawn and dusk. In humans, the onset of
melatonin secretion occurs around dusk, and the offset occurs around
dawn61. While there may not be any noticeable inter-individual differences
in circadian timekeeping during regular, 24 h-periodic light-dark condi-
tions, individual responses to schedule changes can vary tremendously.
Based on our findings, we hypothesize that SLC20A2, localized in SCN core
neurons and involved in seasonal timing in mice33, may be involved in
seasonal timing in humans as well, influencing shiftwork adaptation.While
statistically significant, the combined effects of the SLC20A2 SNPs in our
study are quite small and complex—small effect sizes are expected in genetic
contributions to human behavior62. We do not think that SLC20A2 alone
can explain differences in seasonal behaviors and shiftwork adaptation, but
itmay contribute as one ofmany genetic factors influencing inter-individual
variability. Further studies are needed to clarify the role of SLC20A2 in the
biological pathways regulating seasonal timing in humans and how these
pathways influence circadian entrainment. In addition, studies at the
intersection of work, individual differences, and genetics require careful
interpretation63. Importantly, our findings do not speak to how well indi-
viduals perform during their shifts and should not be used to make
assumptions about capability or performance.

We show that there is a relationship between seasonal timing and
shiftwork adaptation, but the relationship is not straightforward and can be
influenced by many other external factors. Some individuals have more
circadian misalignment on average due to quick responses to abrupt sche-
dule changes, but in some cases this may be advantageous. Understanding
these differences will allow for a deeper understanding of circadian and
seasonal timing as well as their health impacts. Our study shows strong
evidence for a contributing role of photoperiodic timing in shiftwork
adaptation, and we believe that these effects may extend to other modern-
day challenges (e.g., east-west travel) as well.

Genetic polymorphisms linked to speeding up or slowing down
intracellular timingcanaffectoverall circadian rhythms, and evenour ability

to adjust to daylight saving time64. To our knowledge, our study is thefirst to
explore the effects of seasonality and genetics on shift work adaptation in
humans. Our study contributes several new insights related to human cir-
cadian rhythms. Despite mixed findings in the literature, our findings use
data from real-world settings to corroborate previous studies showing sta-
tistically significant seasonal effects in humans. Our study suggests thatHR-
sleep misalignment can be caused by seasonal encoding mechanisms that
are tracking day-to-day schedule changes in a modern-day context. In
addition,we found that therewere statistically significant effects of SLC20A2
SNPs on daily steps, HR-sleep misalignment, and time awake throughout
the year, and using a mathematical model, we studied inter-individual
differences in seasonal timing and shiftwork adaptation.Webelieve that our
findings have important implications for shift work, suggesting that
heightened sensitivity to seasonal cues may contribute to circadian mis-
alignment in response to irregular schedules. These insights highlight the
need for personalized strategies inmanaging shift work tomitigate potential
health risks associated with circadian disruption.

Methods
Study design and participants
Two to three months before the start of the internship, incoming interns
were invited via email to participate. The interns who consented then
completed a baseline (pre-internship) survey. Saliva samples were collected
via mail. Participants were provided a Fitbit Charge 2 or Inspire HR to
collect sleep, steps, and heart rate data; or $50 if they already had a com-
patible Fitbit (Fitbit Inc., San Francisco, CA). The University of Michigan
Institutional Review Board approved the study, and all subjects provided
informed consent after receiving a complete description of the study.

Genotyping
Interns provided saliva samples using the Oragene salivary DNA kits65. The
Illumina Infinium CoreExome-24+ Chip was used for genotyping for the
IHS sample. Next, quality check was implemented by removing samples
with call rate <99%, a sex mismatch between genotype data and reported
data, or a lower call rate when duplicated, and removing SNPs with call rate
<98% (after sample removal) and minor allele frequency (MAF) < 0.005.
Linkage disequilibrium (LD) based SNPpruningwas then performedwith a
window size of 100 kilobases (kb), a step size of 25 variants, and pairwise r2

threshold 0.5. Finally, top 10 principal components (PCs) were extracted
from the genotyped data based on the variance-standardized relationship
matrix. Quality check, LD-pruning, and PCs extraction were all performed
with PLINK v.1.966.

SLC20A2 variant extraction
WeusedRpackage ‘rentrez’ [<rentrez>],whichworkswith theNCBIEntrez
ProgrammingUtilities (E-utilities)API to searchdata fromNCBIdatabases,
to isolate all SLC20A2 SNPs from the genotyped data. From the variants
genotyped in our sample, we found 6 single-nucleotide polymorphisms
(SNPs) of SLC20A2 (rs3763510, rs34749433, rs4737046, rs6988483,
rs13281070, and rs7818789), of which 5 (excluding rs7818789) were not in
LD and effectively independent of each other in terms of inheritance.

Bowman Algorithm
The Bowman algorithm24 is used to determine the phase of HR circadian
rhythms from heart rate and activity data. The model for HR at hour t is
given by

HRt ¼ a� b cos
π

12
t � cð Þ

� �
þ d � Activity þ ϵt ; ð1Þ

with parameters a, b, c, and d, and an error term. HR increases pro-
portionally to activity (steps), and the time of the HRminimum (c) is taken
as the circadian phase. In this study, the consumerwrist-worn Fitbit Charge
2 was used to continuously collect heart rate, sleep, and activity data from
medical interns. A validation study of the Fitbit Charge 2 compared to gold
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standard polysomnography showed a sensitivity of 0.96 (accuracy in
detecting sleep) and a specificity of 0.61 (accuracy in detecting wake) in
healthy adults67. Other studies support the sufficient accuracy of the Fitbit
Charge 2 in measuring heart rate68. Another study69 has shown that wrist-
worn wearable devices measuring heart rate perform well at rest but can
have limited accuracy during exercise. The concordance correlation
coefficient for Fitbit Charge HR (part of the same Charge series) against
electrocardiogram was 0.84. In addition, there are many external factors
influencing heart rate, including meals70 and stress71. Noise accounting for
these effects is modeled as Gaussian noise plus an AR(1) process,

ϵtþ1 ¼ kϵt þ N 0; σ2
� � ð2Þ

Parameters are estimated via Goodman and Weare’s affine-invariant
Markov chain Monte Carlo algorithm72. More details about the model and
parameter estimation can be found in the original paper24 and the code used
is publicly available at https://github.com/pepperhuang/heartrate.

Dual oscillator mathematical model
The model in this paper consists of two ordinary differential equations
(ODEs) describing the rate of change of the phases of two oscillators, the
evening (E) andmorning (M) oscillators. The oscillators are coupled to each
other and to a light signal, where synchronization rates depend on the phase
difference with the synchronizing oscillator (E, M, or light). A schematic
diagram is provided in Fig. 2a and the ODEs are given by

_ϕE ¼ ωE þ AE sin ϕM � ϕE
� �þ AZE Lð Þ sin ϕL � ϕE

� �
; ð3Þ

_ϕM ¼ ωM þ AM sin ϕE � ϕM
� �þ AZM Lð Þ sin ϕL � ϕM

� �
; ð4Þ

where ωE ¼ 2π
24þDEðLÞ, ωM ¼ 2π

24þDM ðLÞ, and

ϕL tð Þ ¼
πt
L ; t < L

π t�Lð Þ
24�L þ π; t ≥ L

(
ð5Þ

ϕEandϕM are thephases of theE andMoscillators, respectively, and t is
in hours. ωE and ωM represent intrinsic frequencies. The second term in
each of Eqs. (3) and (4) describes the coupling effect of the other (E or M)
oscillator, and the third termdescribes the effect of light signaling. Thephase
of the light oscillator with photoperiod L is denoted ϕL (Eq. (5)). Here,
ϕL(0) = ϕL(24) = 0 radians so that the light signal is 24 h periodic and
ϕL(L) = π radians so that the oscillator completes half a cycle at the endof the
light phase. Light signaling drives their intrinsic frequencies further apart as
in ref. 8. We take this effect to be sigmoidal, where Di(L) = (1 + exp(− p
(aiL−1)))−1 for i∈ {E,M}. The light intensity is representedbyaiL so that it is
proportional to the photoperiod, as it is in natural settings. The functions
AZE(L) = aebeL andAZM(L) = ambmL account for light intensity aeL and amL
and coupling strength through the parameters be and bm. For each parti-
cipant, we took L to be the natural photoperiod at their geographic location.
Sunlight is significantly brighter than indoor lighting, and several studies
show that even when individuals spendmost of their time indoors, they are
exposed to bright light throughout the day in relation to day length73–75.

The initial parameter values used for nonlinear least-squares fitting
were ae = 0.0833, am = 0.0833, be = 0.009, bm = 0.008, Ae = 0.001,
Am = 0.001, and p = 2.5. These values were informed by simulations in
previous studies using a dual oscillator model43,44. Before fitting, the data
was normalized by the group 1 average (8,742.7 steps) and the phase gap
curves were normalized by 4.35 h so that the normalized group 1 phase
gaps were centered around 1 (see Fig. 5a). In comparing parameter values
across groups, we omitted parameters beyond 3 scaled median absolute
deviations (MAD) from the median, which corresponded to about 10%
from both the upper and lower ends of each set on average. This threshold
was applied symmetrically and consistently across groups. Numerical
solutions for the ODEs were computed using ode45 in MATLAB. The

code for the ODEs and parameter fitting is provided at https://github.
com/rubyshkim/twophase_ODEs.

Data availability
The de-identified data from Intern Health Study that supports our findings
are available from the authors upon reasonable request.

Code availability
The MATLAB code for the mathematical model is available at https://
github.com/rubyshkim/twophase_ODEs. The code created for the data
analyses in this paper is available from the authors upon reasonable request.

Received: 17 February 2025; Accepted: 25 April 2025;

References
1. Samson, D. R. &McKinnon, L. Are humans facing a sleep epidemic

or enlightenment? large-scale, industrial societies exhibit long,
efficient sleep yet weak circadian function. Proc. B 292, 20242319
(2025).

2. Schmid, S. R. et al. How smart is it to go to bed with the phone? the
impact of short-wavelength light and affective states on sleep and
circadian rhythms. Clocks Sleep. 3, 558–580 (2021).

3. Jackson, S. D. Plant responses to photoperiod. N. Phytol.181,
517–531 (2009).

4. Hut, R. A. & Beersma, D. G. Evolution of time-keeping mechanisms:
early emergence and adaptation to photoperiod. Philos. Trans. R.
Soc. B: Biol. Sci. 366, 2141–2154 (2011).

5. Wehr, T. A. In short photoperiods, human sleep is biphasic. J. Sleep.
Res. 1, 103–107 (1992).

6. Wehr, T.A. et al.Conservationofphotoperiod-responsivemechanisms in
humans. Am. J. Physiol. -Regul, Integr. Comp. Physiol. 265, R846–R857
(1993).

7. Wang, Q., Liu, W., Leung, C. C., Tarté, D. A. & Gendron, J. M. Plants
distinguish different photoperiods to independently control seasonal
flowering and growth. Science 383, eadg9196 (2024).

8. Pittendrigh, C. S. & Daan, S. A functional analysis of circadian
pacemakers in nocturnal rodents. J. Comp. Physiol. 106, 333–355
(1976).

9. Hoffmann, K. Splitting of the circadian rhythm as a function of light
intensity. Biochronometry 134, 50 (1971).

10. Yoshii, T., Rieger, D. & Helfrich-Förster, C. Two clocks in the brain: an
update of the morning and evening oscillator model in Drosophila.
Prog. Brain Res. 199, 59–82 (2012).

11. Collins, B. et al. Circadian VIPergic neurons of the suprachiasmatic
nuclei sculpt the sleep-wake cycle. Neuron 108, 486–499.e5
(2020).

12. Saini, R., Jaskolski, M. & Davis, S. J. Circadian oscillator proteins
across the kingdoms of life: structural aspects. BMC Biol. 17, 1–39
(2019).

13. Schwartz, W. J., Reppert, S. M., Eagan, S. M. & Moore-Ede, M. C. In
vivo metabolic activity of the suprachiasmatic nuclei: a comparative
study. Brain Res. 274, 184–187 (1983).

14. Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators:
lessons from diverse organisms. Nat. Rev. Genet. 6, 544–556 (2005).

15. Evans, J. A. & Schwartz, W. J. On the origin and evolution of the dual
oscillator model underlying the photoperiodic clockwork in the
suprachiasmatic nucleus. J. Comp. Physiol. A 210, 503–511 (2024).

16. Wehr, T. A. The durations of human melatonin secretion and sleep
respond to changes in (photoperiod). J. Clin. Endocrinol. Metab. 73,
1276–1280 (1991).

17. Wehr, T. A. Photoperiodism in humans and other primates: evidence
and implications. J. Biol. Rhythms 16, 348–364 (2001).

18. Wright, K. P. et al. Entrainment of the human circadian clock to the
natural light-dark cycle. Curr. Biol. 23, 1554–1558 (2013).

https://doi.org/10.1038/s41746-025-01678-z Article

npj Digital Medicine |           (2025) 8:300 10

https://github.com/pepperhuang/heartrate
https://github.com/rubyshkim/twophase_ODEs
https://github.com/rubyshkim/twophase_ODEs
https://github.com/rubyshkim/twophase_ODEs
https://github.com/rubyshkim/twophase_ODEs
www.nature.com/npjdigitalmed


19. Dunster, G. P. et al. Daytime light exposure is a strong predictor of
seasonal variation in sleep and circadian timing of university students.
J. Pineal Res 74, e12843 (2023).

20. Mattingly, S. M. et al. The effects of seasons and weather on sleep
patternsmeasured through longitudinalmultimodal sensing.npjDigit.
Med. 4, 76 (2021).

21. Li, L., Nakamura, T., Hayano, J. & Yamamoto, Y. Seasonal sleep
variations and their association with meteorological factors: a
Japanese population study using large-scale body acceleration data.
Front. Digit. Health 3, 677043 (2021).

22. Turrisi, T.B. et al. Seasons,weather, anddevice-measuredmovement
behaviors: a scoping review from 2006 to 2020. Int. J. Behav. Nutr.
Phys. Act. 18, 24 (2021).

23. Moreno, J. P. et al. Potential circadian and circannual rhythm
contributions to the obesity epidemic in elementary school age
children. Int. J. Behav. Nutr. Phys. Act. 16, 1–10 (2019).

24. Bowman, C. et al. A method for characterizing daily physiology from
widely used wearables. Cell Rep. Methods 1, 8 (2021).

25. Kim, D. W., Lee, M. P. & Forger, D. B. Wearable Data Assimilation to
Estimate the Circadian Phase. SIAM J. Appl. Math. 84, S452–S475
(2024).

26. Kim, D. W. et al. Efficient assessment of real-world dynamics of
circadian rhythms in heart rate and body temperature from wearable
data. J. R. Soc. Interface 20, 20230030 (2023).

27. Gamble, K. L. et al. Shift work in nurses: Contribution of phenotypes
and genotypes to adaptation. PLOS ONE 6, 1–12 (2011).

28. Li, X. & Zhao, H. Automated feature extraction from population
wearable device data identified novel loci associated with sleep and
circadian rhythms. PLOS Genet. 16, 1–22 (2020).

29. Cui, S. et al. Care as a wearable derived feature linking circadian
amplitude to human cognitive functions. npj Digit. Med. 6, 123
(2023).

30. Ho, K. W. D. et al. Genome-wide association study of seasonal
affective disorder. Transl. Psychiatry 8, 190 (2018).

31. Li, P., Guo, M., Wang, C., Liu, X. & Zou, Q. An overview of SNP
interactions in genome-wide association studies. Brief. Funct.
Genom. 14, 143–155 (2014).

32. Garbazza, C. & Benedetti, F. Genetic factors affecting seasonality,
mood, and the circadian clock. Front. Endocrinol. 9, 481 (2018).

33. Pierre-Ferrer, S. et al. A phosphate transporter in VIPergic neurons of
the suprachiasmatic nucleus gates locomotor activity during the light/
dark transition in mice. Cell Rep. 43, 114220 (2024).

34. Wiens, T. Day length. https://www.mathworks.com/matlabcentral/
fileexchange/20390-day-length, 2015. [Online; accessed February
12, 2024].

35. Vetter, C. Circadian disruption: What do we actually mean?. Eur. J.
Neurosci. 51, 531–550 (2020).

36. Snyder, F., Hobson, J. A., Morrison, D. F. & Goldfrank, F. Changes in
respiration, heart rate, and systolic blood pressure in human sleep. J.
Appl. Physiol. 19, 417–422 (1964).

37. Morris, C. J., Purvis, T. E., Hu, K. & Scheer, F. A. J. L. Circadian
misalignment increases cardiovascular disease risk factors in
humans. Proc. Natl. Acad. Sci. USA 113, E1402–E1411 (2016).

38. Lee,M. P. et al. The real-world association between digital markers of
circadian disruption and mental health risks. NPJ Digit. Med. 7, 1–15
(2024).

39. Fudolig, M. I. et al. The two fundamental shapes of sleep heart rate
dynamics and their connection to mental health in college students.
Digit. Biomark. 8, 120–131 (2024).

40. Ratcliffe, S. J. & Shults, J. GEEQBOX: A MATLAB toolbox for
generalized estimating equations and quasi-least squares. J. Stat.
Softw. 25, 1â€14 (2008).

41. Price, A. L. et al. Principal components analysis corrects for
stratification in genome-wide association studies. Nat. Genet. 38,
904–909 (2006).

42. Honma, K., Honma, S., Kohsaka, M. & Fukuda, N. Seasonal variation
in the human circadian rhythm: dissociation between sleep and
temperature rhythm. Am. J. Physiol. 262, R885–R891 (1992).

43. Myung, J. et al. Gaba-mediated repulsive coupling between circadian
clock neurons in the SCN encodes seasonal time. Proc. Natl. Acad.
Sci. USA 112, E3920–E3929 (2015).

44. Myung, J. & Pauls, S. D. Encoding seasonal information in a two-
oscillator model of the multi-oscillator circadian clock. Eur. J.
Neurosci. 48, 2718–2727 (2018).

45. Schmal, C., Herzog, E. D. & Herzel, H. Measuring relative coupling
strength in circadian systems. J. Biol. Rhythms 33, 84–98 (2018).

46. Lynch, H. J. et al. Entrainment of rhythmicmelatonin secretion in man
to a 12-hour phase shift in the light/dark cycle,Life Sci.23, 1557–1563
(1978).

47. Mills, J., Minors, D. & Waterhouse, J. Adaptation to abrupt time shifts
of the oscillator (s) controlling human circadian rhythms. J. Physiol.
285, 455–470 (1978).

48. Diekman, C. O. & Bose, A. Beyond the limits of circadian entrainment:
Non-24-h sleep-wake disorder, shift work, and social jet lag. J. Theor.
Biol. 545, 111148 (2022).

49. Monsivais, D., Bhattacharya, K., Ghosh, A., Dunbar, R. I. & Kaski, K.
Seasonal and geographical impact on human resting periods. Sci.
Rep. 7, 10717 (2017).

50. Walker, N. J., Van Woerden, H. C., Kiparoglou, V. & Yang, Y.
Identifying seasonal and temporal trends in the pressures
experienced by hospitals related to unscheduled care. BMC Health
Serv. Res. 16, 1–10 (2016).

51. Suhail, K. & Cochrane, R. Seasonal variations in hospital admissions
for affective disorders by gender and ethnicity. Soc. Psychiatry
Psychiatr. Epidemiol. 33, 211–217 (1998).

52. Akintoye, E. et al. Seasonal variation in hospitalization outcomes in
patients admitted for heart failure in the United States,. Clin. Cardiol.
40, 1105–1111 (2017).

53. Lewy, A. J. Circadian misalignment in mood disturbances. Curr.
Psychiatry Rep. 11, 459–465 (2009).

54. Sandman, N. et al. Winter is coming: nightmares and sleep problems
during seasonal affective disorder. J. Sleep. Res. 25, 612–619 (2016).

55. DeWoskin, D. et al. Distinct roles for GABAacrossmultiple timescales
in mammalian circadian timekeeping. Proc. Natl. Acad. Sci. 112,
E3911–E3919 (2015).

56. Hannay, K. M., Forger, D. B. & Booth, V. Seasonality and light phase-
resetting in the mammalian circadian rhythm. Sci. Rep. 10, 19506
(2020).

57. Fernandez, D. C., Chang, Y.-T., Hattar, S. & Chen, S.-K. Architecture
of retinal projections to the central circadian pacemaker. Proc. Natl.
Acad. Sci. 113, 6047–6052 (2016).

58. Zee, P. C. & Goldstein, C. A. Treatment of shift work disorder and jet
lag. Curr. Treat. Options Neurol. 12, 396–411 (2010).

59. Best, J., Kim, R., Reed, M. & Nijhout, H. F. A mathematical model of
melatonin synthesis and interactions with the circadian clock.Math.
Biosci. 377, 109280 (2024).

60. Serkh, K. & Forger, D. B. Optimal schedules of light exposure for
rapidly correcting circadian misalignment. PLoS Comput. Biol. 10,
e1003523 (2014).

61. Arendt, J. Melatonin and human rhythms. Chronobiol. Int. 23, 21–37
(2006).

62. Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J. & Laibson, D. I.
The fourth law of behavior genetics. Curr. Direct. Psychol. Sci. 24,
304–312 (2015).

63. Martschenko, D. O. Ethics of genomic research on occupational
status. Nat. Hum. Behav. 9, 245–247 (2025).

64. Tyler, J. et al. Genomic heterogeneity affects the response to daylight
saving time. Sci. Rep. 11, 14792 (2021).

65. Rogers, N. L., Cole, S. A., Lan, H.-C., Crossa, A. & Demerath, E. W.
New saliva DNA collectionmethod compared to buccal cell collection

https://doi.org/10.1038/s41746-025-01678-z Article

npj Digital Medicine |           (2025) 8:300 11

https://www.mathworks.com/matlabcentral/fileexchange/20390-day-length
https://www.mathworks.com/matlabcentral/fileexchange/20390-day-length
https://www.mathworks.com/matlabcentral/fileexchange/20390-day-length
www.nature.com/npjdigitalmed


techniques for epidemiological studies.Am. J.Hum.Biol.19, 319–326
(2007).

66. Chang, C. C. et al. Second-generation PLINK: rising to the challenge
of larger and richer datasets,GigaScience 4, s13742–015–0047–8, 02
(2015).

67. De Zambotti, M., Goldstone, A., Claudatos, S., Colrain, I. M. &
Baker, F. C. A validation study of Fitbit Charge 2â„¢ compared with
polysomnography in adults. Chronobiol. Int. 35, 465–476 (2018).

68. Irwin, C. & Gary, R. Systematic review of Fitbit Charge 2 validation
studies for exercise tracking. Transl. J. Am. Coll. Sports Med. 7, 1–7
(2022).

69. Wang, R. et al. Accuracy of wrist-worn heart rate monitors. JAMA
Cardiol. 2, 104–106 (2017).

70. Young, H. A. & Benton, D. Heart-rate variability: a biomarker to study
the influence of nutrition on physiological and psychological health?.
Behav. Pharmacol. 29, 140–151 (2018).

71. Kim,H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H. &Koo, B.-H. Stress and
heart rate variability: a meta-analysis and review of the literature.
Psychiatry Investig. 15, 235 (2018).

72. Goodman, J. & Weare, J. Ensemble samplers with affine invariance.
Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

73. Hubert, M., Dumont, M. & Paquet, J. Seasonal and diurnal patterns of
human illumination under natural conditions. Chronobiol. Int. 15,
59–70 (1998).

74. Dumont, M. & Beaulieu, C. Light exposure in the natural environment:
relevance tomood and sleep disorders.Sleep. Med. 8, 557–565 (2007).

75. Thorne, H. C., Jones, K. H., Peters, S. P., Archer, S. N. & Dijk, D.-J.
Daily and seasonal variation in the spectral composition of light
exposure in humans. Chronobiol. Int. 26, 854–866 (2009).

Acknowledgements
The authors gratefully acknowledge funding from MURI through the ARO
W911NF-22-1-0223, NIMH R0101459, and NSF DMS grant 2052499, the
National Research Foundation of KoreaRS-2025-00561696, and the KAIST
start-up research fund G04240060.

Author contributions
R.K.was involved instudyconceptionanddesign,performedcomputational
simulations, analyzed the data, contributed to data interpretation, prepared
the figures, and wrote the manuscript draft. Y.F. extracted the data,
contributed to data interpretation, and contributed to writing the Methods.
M.P.L. curated the data, performed computational simulations, and
contributed to data interpretation. D.W.K. curated the data and contributed

to data interpretation. Z.T. contributed to data interpretation. S.S. was
involved in study conception and design and contributed to data
interpretation. D.B.F. was involved in study conception and design,
contributed to data interpretation, and contributed to writing. All authors
have read and approved the final manuscript.

Competing interests
DBF is the CSO of Arcascope, a company that makes circadian rhythms
software. Both he and the University of Michigan are part owners of
Arcascope. Arcascope did not sponsor this research. All other authors
declare they have no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-025-01678-z.

Correspondence and requests for materials should be addressed to
Ruby Kim or Daniel B. Forger.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41746-025-01678-z Article

npj Digital Medicine |           (2025) 8:300 12

https://doi.org/10.1038/s41746-025-01678-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjdigitalmed

	Seasonal timing and interindividual differences in shiftwork adaptation
	Results
	Seasonal variation in daily activity and time awake
	Dual oscillator model for seasonal encoding
	Seasonality and shiftwork adaptation
	Combined effects of SLC20A2 SNPs
	Altered seasonal timing and shiftwork adaptation in genotype groups

	Discussion
	Methods
	Study design and participants
	Genotyping
	SLC20A2 variant extraction
	Bowman Algorithm
	Dual oscillator mathematical model

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




