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SUMMARY

Stress is the most important proximal precipitant of
depression, yet most large genome-wide associ-
ation studies (GWAS) do not include stress as a
variable. Here, we review how gene × environment
(G × E) interaction might impede the discovery of
genetic factors, discuss two examples of G × E
interaction in depression and addiction, studies
incorporating high-stress environments, as well
as upcoming waves of genome-wide environment
interaction studies (GWEIS). We discuss recent
studies which have shown that genetic distribu-
tions can be affected by social factors such as
migrations and socioeconomic background.
These distinctions are not just academic but
have practical consequences. Owing to interaction
with the environment, genetic predispositions to
depression should not be viewed as unmodifiable
destiny. Patients may genetically differ not just in
their response to drugs, as in the now well-recog-
nised field of pharmacogenetics, but also in how
they react to stressful environments and how
they are affected by behavioural therapies.
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Nearly all first depressive episodes are triggered by a
stressful life event (e.g. death of a loved one, divorce,
job loss) or a stressful period of life (e.g. starting
college, medical internship, military deployment).
We have long known the propensity of individuals
with high genetic liability, as measured by family
history, to become depressed in response to stress,
indicating the presence of gene × environment (G ×E)
interaction in depression (Kendler 2004). However,
until recently, advancement on our knowledge
about the nature of these G×E interactions had
stalled.
Specifically, after many smaller genome-wide

association studies (GWAS) with no or few signifi-
cant findings, recent GWAS of depression have uti-
lised very large samples to identify a growing
number of associated loci, with a recent meta-

analysis finding 178 depression-associated loci in a
sample of >1 million participants (Levey 2020).
This progress opens the door to gaining insights
into G × E interactions in depression but requires
different study designs and approaches to maximise
understanding.

Two major forms of G × E interaction:
diathesis–stress and differential
susceptibility
How genes and environment interact can be simple
or complex (Haldane 1938). Figure 1 illustrates
additive effects and the simplest two ways of G × E
interaction (diathesis–stress and differential
susceptibility).
In the diathesis–stress model (Fig. 1(b)), the vul-

nerability or risk allele increases the likelihood of
an environmental stressor leading to the outcome
(such as depression), whereas the resilience allele
leaves the individual unaffected. Such risk alleles
should be identifiable by traditional GWAS with a
large enough sample, even if the environment is
not known. These vulnerability alleles are,
however, more easily detectable in studies in which
all participants are exposed to the risk environment,
such as post-traumatic stress disorder (PTSD)
studies where all participants were deployed in mili-
tary action, addiction studies in which all family
members are from families who drink or smoke, or
special studies of stress-induced depression such as
the Intern Health Study (Sen 2010) or studies of
depression after childbirth or major medical stres-
sors such as mastectomy or myocardial infarction.
In the differential susceptibility model (Belsky

2009) (Fig. 1(c)), individuals differ in ‘plasticity’,
and positive and negative environments can have
opposite effects – people without the plasticity allele
are less affected by the environment, whereas those
with the plasticity allele are at higher risk in the nega-
tive environment but also benefit more from the posi-
tive environment. GWAS in this scenario are
predicted to give no or contradictory findings, as
results depend on the environment – a study among
people who do not drink or who live under low

CLINICAL
REFLECTION

Margit Burmeister, PhD, is
Associate Chair and tenured
Professor of Computational Medicine
& Bioinformatics and a Research
Professor in the Michigan
Neuroscience Institute, University of
Michigan, Ann Arbor, MI, USA. She
also holds appointments as Professor
of Psychiatry and Professor of Human
Genetics. She received her doctorate
from the Ruprecht Karl University of
Heidelberg in Germany for work at
the European Molecular Biology
Laboratory. She trained as a post-
doctoral fellow at the University of
California in San Francisco. She has
held visiting Professorships at the
Max Planck Institute for Molecular
Genetics in Berlin, Shanghai Jiao
Tong University, China, the
Weizmann Institute of Science,
Israel, the University of Heidelberg
and the Chinese University of Hong
Kong in Shenzhen, China. Srijan
Sen, MD, PhD, is Director of the
University of Michigan Depression
Center and the Frances and Kenneth
Eisenberg Professor of Depression
and Neurosciences in the Department
for Psychiatry, University of
Michigan, Ann Arbor, MI, USA. He is
also Associate Vice President for
Health Sciences, Research Professor
of the Michigan Neuroscience
Institute and Professor for
Computational Medicine &
Bioinformatics at the University of
Michigan. He received his MD and
PhD at the University of Michigan and
trained as resident in psychiatry at
Yale University.
Correspondence Margit
Burmeister. Email: margit@umich.
edu

First received 7 Nov 2020
Final revision 11 Feb 2021
Accepted 14 Feb 2021

Copyright and usage
© The Authors 2021

BJPsych Advances (2021), vol. 27, 153–157 doi: 10.1192/bja.2021.21

153
Downloaded from https://www.cambridge.org/core. 15 Jul 2021 at 16:25:03, subject to the Cambridge Core terms of use.

https://orcid.org/0000-0002-1914-2434
https://orcid.org/0000-0003-4495-495X
mailto:margit@umich.edu
mailto:margit@umich.edu
https://crossmark.crossref.org/dialog?doi=10.1192/bja.2021.21&domain=pdf
https://www.cambridge.org/core


stress may give opposite findings from a study per-
formed in an environment with high alcohol use or
high stress, and large meta-analyses that mix all
types of environment are not likely to yield any sig-
nificant findings. The association of the serotonin
transporter promoter polymorphism with depression
in the presence of stress may be a case in point, as the
risk variant under stress is also more protective in a
beneficial environment (van IJzendoorn 2012), and
meta-analyses have come to contradictory conclu-
sions (Karg 2011; Culverhouse 2018).
From a translational perspective, if genetic risk is

primarily due to plasticity factors, it suggests that
individuals at high genetic risk might also dispro-
portionately benefit more from behavioural or envir-
onmental interventions (Belsky 2009).
An illustrative example is the study of single-

nucleotide polymorphisms (SNPs) in the nicotinic
acetylcholine receptor 5 that had long been associated
with number of cigarettes smoked (Li 2009). A recent
study (Taylor 2014) investigated the effect of this
locus on weight (bodymass index, BMI). As expected
from the effect of smoking in reducing body weight,
the study found that the risk haplotype (the minor
allele) was associated with reduced BMI in current
smokers. However, against expectations, the
authors found that people who had never smoked
showed an increase in BMI for the same allele (Fig. 2).
To see even a nominally significant effect of the

locus on BMI without stratifying by smoking
status – as is common in GWAS of BMI – would
require a sample of >750 000 participants. In fact,
GWAS of obesity/BMI/weight have not identified
this locus (Locke 2015; Yengo 2018). Further, one
would expect contradictory results if a study were
performed in populations with low versus high
prevalence of smoking. Hence, future genetic
studies of BMI should consider smoking status.

High stress paradigms: physician stress,
childbirth and PTSD
One way to overcome the challenge of detecting the
effect of genetic alleles on the trait is to sample at
one extreme of the environment (Kendler 2006).

For major depressive disorder (MDD), it is clear
that stress is a major trigger, hence one currently
used paradigm to study factors involved in depres-
sion is to use a population under high stress.
Examples are the first year of medical residency,
as in the Intern Health Study (Sen 2010), military
deployment of veterans (Nievergelt 2019) or the spe-
cific stressor of childbirth as a trigger of post-partum
depression (Bauer 2019). In the Intern Health
Study, we found that polygenic risk scores from
large case–control GWAS in MDD could predict
risk but were particularly strong in predicting resili-
ence to MDD under this stress (Fang 2020). Such
studies do not study the interaction per se, but use
of a high-stress paradigm favours identification of
genetic factors that act in the presence of stress,
regardless of whether they are vulnerability or
plasticity factors. Such studies where one stressor
is consistently present may be helpful to identify
both genetic and environmental resilience factors
(Kim-Cohen 2012), a topic of great interest in posi-
tive psychology and of clinical relevance.

FKBP5 and GABRA2: two examples of
working G × E models
Historical candidate genes of stress and depression
in general have not fared well (Border 2019), but
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FIG 1 Gene × environment associations. (a) gene and environment effects (additive, no interaction). (b) Diathesis-stress (risk factor). (c) Differential susceptibility
(plasticity).
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FIG 2 Association between body mass index (BMI) and
smoking status in people with single-nucleotide
polymorphisms (SNPs) in the nicotinic acetylcholine
receptor 5. BMI, body mass index; major allele, the
most common allele for the SNP; minor allele, the
secondmost common allele for the SNP. Drawn using
data from Taylor et al (2014).
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the following two examples seem to have survived
the test of time.

FKBP5, encoding FK506-binding protein 51
Stress activates the hypothalamic–pituitary–adrenal
(HPA) axis, which in turn stimulates glucocorti-
coids. These bind to glucocorticoid receptors,
which activates a number of genes, including
FKBP5 (which encodes the FK506-binding protein
51 (FKBP51)), that then dampen the HPA axis
(Matosin 2018;Menke 2019). FKBP51 is a co-chap-
erone of the glucocorticoid receptor. Its gene,
FKBP5, is activated by the glucocorticoid receptor.
This activation is dampened by methylation
(Fig. 3). The rarer T allele of one SNP in the enhan-
cer of FKBP5 increases the binding of the transcrip-
tional machinery and hence increases the
glucocorticoid-receptor mediated HPA dysregula-
tion of the stress response and increases risk for
MDD in those subjected to childhood trauma

(Matosin 2018), and for PTSD (Fig. 3, Kang
et al, 2019). The mechanism appears to be that
the C allele can be methylated, e.g. by a stressful
experience such as PTSD, leading to a dampened
HPA axis response, whereas the risk T allele
cannot be methylated and its carriers are less buf-
fered against the traumatic experience.

GABRA2, encoding the α2 subunit of the GABAA
receptor
The GABRA2 gene evolved as a candidate risk
variant from linkage studies (Long 1998;
Edenberg 2004), and meta-analyses confirmed its
association with alcoholism (Zintzaras 2012; Li
2014), which we showed was in part mediated
through impulsivity (Villafuerte 2012, 2013).
Although GABRA2 appeared as a traditional risk
vulnerability factor in the original studies, which
were based in families with high levels of alcoholism,
our studies show that the GABRA2 ‘risk’ haplotype
is best understood as a plasticity allele, as indivi-
duals with the plasticity allele are more influenced
by parents (Trucco 2016) or by peers (Villafuerte
2014; Trucco 2017), in both a negative and a posi-
tive manner (Fig. 4). A recent study of 11 000 indivi-
duals confirmed GABRA2 as a genetic plasticity
factor with regard to behavioural outcomes
(Schlomer 2020), whereas GWAS of alcoholism or
alcohol intake (Gelernter 2019; Kranzler 2019) did
not identify GABRA2 as a risk variant. The molecu-
lar mechanism is still not understood as the plasti-
city allele of GABRA2 is a haplotype involving
>200 SNPs (Enoch 2008), none of them known to
be functional.

From large GWAS hits to polygenic effects
GWAS, as successful as they have been in identify-
ing thousands of risk variants (Mills 2019), have
one huge disadvantage: by testing millions of
SNPs, the number of statistical tests is large, and
therefore a P-value of 5 × 10−8, correcting for 1
million independent tests, is considered the statis-
tical threshold of significance. That means that the
number of samples to find a significant hit is
extremely large (in the hundreds of thousands) to
identify >100 genome-wide significant hits, which
usually explain only a few per cent of the risk.
There is a linear relationship between significant
loci and sample size, suggesting that many more
potential hits can be found (Visscher 2012).
Polygenic risk scores (PRS) have started to over-

come this dilemma (Wray 2007). A PRS is calcu-
lated from a large GWAS on all or a subset of
SNPs (e.g. the top 1% or top 10%). After accounting
for the first 5–10 principal components, all selected
SNPs are weighted by effect size on the trait of
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FIG 4 Probability of externalising behaviour depending on
parental monitoring style in people with the plasticity
allele of GABRA2 compared with those with the
common (typical) allele. After Trucco et al (2016).
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FIG 3 Association between methylation of FKBP5 and
symptoms of post-traumatic stress disorder (PTSD) in
people with the risk allele (T) of FKBP5 compared with
those with the common (typical) allele (C). Redrawn
with permission from Kang et al (2019).
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interest, accounting for the direction of the effect. In
this manner, a participant in a new study not over-
lapping the original GWAS can be assigned a
single PRS, andwhere the score falls within the spec-
trum of the group, that indicates the degree to which
they are at risk. For example, in the Intern Health
Study, we found that medical interns in the lowest
5% of PRS were highly significantly protected from
depression during the internship year, whereas
those in the top 5% were at significantly higher
risk, but the difference between the top 5%, top
30% and average PRS was small (Fang 2020), indi-
cating that in a high-stress environment, genetic dif-
ferences of resilience are more prominent.

Moving from candidate genes to GWEIS
Given the tentative evidence from a few candidate
genes for plasticity in interaction with the environ-
ment, the field is now moving to genome-wide inter-
action studies, originally called gene–environment-
wide interaction studies (GEWIS) (Thomas 2010)
but now more commonly known as genome-wide
environment interaction studies (GWEIS).
A recent GWEIS considering the interaction
between depression and life stress in two UK popu-
lation-based cohorts (Generation Scotland and the
UK biobank) has not, however, yielded genome-
wide significant SNPs, although gene-specific
assessment put some candidate genes into promin-
ence (Arnau-Soler 2019). As with G × E studies of
candidate genes, whether asking about significant
life events in the past 6 months is the best way of
measuring stress in such large data-sets remains to
be seen. In our opinion, we can have more confi-
dence in stress measured during combat than in
stress that happens to be reported at the time of
recruitment in such a large population-wide data-
set across many age groups and life risks.

Not all environment is purely environmental,
and not all genetics is genetic!
The possibility to now perform genetic analysis
using polygenic risk scores (PRS) on large samples
has opened a new field, studying the influence of
genes on continuous traits (e.g. educational achieve-
ment; Selzam 2017) that are known to have many
socioeconomic influences. Such genetic studies are
highly controversial. Since ‘risk of’ a continuous
trait such as educational achievement is meaning-
less, it is more appropriate to use the broader term
polygenic score (PGS) (also called the genome-
wide polygenic score, GPS).
We think of genetic factors as clearly distinct from

environmental factors. However, when it comes to
behaviour, the lines are not distinct. For lifestyle
choices and many other environmental factors,

genetics may contribute predictors of behaviours
and propensities to certain behaviours that may
usually be seen as environmental: the propensity
for smoking clearly has genetic contributions, ‘acci-
dent-proneness’ in childrenmay be linked to person-
ality traits of ‘sensation seeking’ or low ‘harm
avoidance’, and two well-recognised ‘environmen-
tal’ factors contributing to depression, experience
of childhood trauma and life stressors (Kendler
1998), actually have a genetic propensity.
On the other hand, although overall population

effects are usually accounted for by removing the
effects of the first principal components when calcu-
lating PGS, some social factors may remain. So
when the PGS for educational attainment explains
8% of a 16-year-old’s test score (Selzam 2017),
this does not necessarily mean that 8% of the score
is predicted genetically. For example, socioeconomic
background and local migrations may reflect long-
standing biases in society of how people migrated
and which schools they can attend (Abdellaoui
2019).
This new field of social genomics (Adam 2019)

will be go back to old controversies of nature
versus nurture with new insights. By placing as
much attention on analysing the environment as
the millions of genetic alleles, a better recognition
of G × E interactions will bring both genetic and
sociological advances. Personalised medicine when
it comes to depression may not be limited to
‘which drug works best’ for a given patient, but
will include recognition that some patients may
respond differently to various types of behavioural
therapy. Especially when it comes to behaviour,
our genetic background does not determine our
destiny; but rather, our destiny is plastic, and modi-
fying it may involve optimising environments
according to our genetic background.
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